Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Cancer Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713248

RESUMO

PURPOSE: The efficacy of induction chemotherapy (IC) as a primary treatment for advanced nasopharyngeal carcinoma (NPC) remains a topic of debate, with a lack of dependable biomarkers for predicting its efficacy. This study seeks to establish a predictive classifier utilizing plasma metabolomics profiling. EXPERIMENTAL DESIGN: A total of 166 NPC patients enrolled in the clinical trial NCT05682703 and undergoing IC were included in the study. Plasma lipoprotein profiles were obtained using 1H-NMR before and after IC treatment. An AI-assisted radiomics method was developed to effectively evaluate the efficacy. Metabolic biomarkers were identified through a machine learning approach based on a discovery cohort and subsequently validated in a validation cohort that mimicked the most unfavorable scenario in real-world. RESULTS: Our research findings indicate that the effectiveness of IC varies among individual patients, with a correlation observed between efficacy and changes in metabolite profiles. Utilizing machine learning techniques, it was determined that the XGB model exhibited notable efficacy, attaining an Area Under the Curve (AUC) value of 0.792 (95% CI, 0.668-0.913). In the validation cohort, the model exhibited strong stability and generalizability with an AUC of 0.786 (95%CI, 0.533-0.922). CONCLUSION: In this study, we found that dysregulation of plasma lipoprotein may result in resistance to IC in NPC patients. The prediction model constructed based on the plasma metabolites' profile as good predictive capabilities and potential for real-world generalization. This discovery has implications for the development of treatment strategies and may offer insight into potential targets for enhancing the effectiveness of IC.

2.
J Nanobiotechnology ; 22(1): 164, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600601

RESUMO

Plasma proteins are considered the most informative source of biomarkers for disease diagnosis and monitoring. Mass spectrometry (MS)-based proteomics has been applied to identify biomarkers in plasma, but the complexity of the plasma proteome and the extremely large dynamic range of protein abundances in plasma make the clinical application of plasma proteomics highly challenging. We designed and synthesized zeolite-based nanoparticles to deplete high-abundance plasma proteins. The resulting novel plasma proteomic assay can measure approximately 3000 plasma proteins in a 45 min chromatographic gradient. Compared to those in neat and depleted plasma, the plasma proteins identified by our assay exhibited distinct biological profiles, as validated in several public datasets. A pilot investigation of the proteomic profile of a hepatocellular carcinoma (HCC) cohort identified 15 promising protein features, highlighting the diagnostic value of the plasma proteome in distinguishing individuals with and without HCC. Furthermore, this assay can be easily integrated with all current downstream protein profiling methods and potentially extended to other biofluids. In conclusion, we established a robust and efficient plasma proteomic assay with unprecedented identification depth, paving the way for the translation of plasma proteomics into clinical applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Zeolitas , Humanos , Carcinoma Hepatocelular/diagnóstico , Proteoma , Proteômica/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores/análise , Proteínas Sanguíneas/análise
4.
ChemMedChem ; : e202400060, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443744

RESUMO

Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.

5.
Adv Sci (Weinh) ; : e2308765, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520712

RESUMO

Serological tests for Epstein-Barr virus (EBV) antibodies have been widely conducted for the screening of nasopharyngeal carcinoma (NPC) in endemic areas. Further risk stratification of NPC can be achieved through plasma lipoprotein and metabolic profiles. A total of 297 NPC patients and 149 EBV-positive participants are enrolled from the NCT03919552 and NCT05682703 cohorts for plasma nuclear magnetic resonance (NMR) metabolomic analysis. Small, dense very low density lipoprotein particles (VLDL-5) and large, buoyant low density lipoprotein particles (LDL-1) are found to be closely associated with nasopharyngeal carcinogenesis. Herein, an NMR-based risk score (NRS), which combines lipoprotein subfractions and metabolic biomarkers relevant to NPC, is developed and well validated within a multicenter cohort. Combining the median cutoff value of the NRS (N50) with that of the serological test for EBV antibodies, the risk stratification model achieves a satisfactory performance in which the area under the curve (AUC) is 0.841 (95% confidence interval: 0.811-0.871), and the positive predictive value (PPV) reaches 70.08% in the combined cohort. These findings not only suggest that VLDL-5 and LDL-1 particles can serve as novel risk factors for NPC but also indicate that the NRS has significant potential in personalized risk prediction for NPC.

6.
Cell Death Dis ; 14(7): 451, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474520

RESUMO

Exosomes contribute substantially to the communication between tumor cells and normal cells. Benefiting from the stable structure, circular RNAs (circRNAs) are believed to serve an important function in exosome-mediated intercellular communication. Here, we focused on circRNAs enriched in starvation-stressed hepatocytic exosomes and further investigated their function and mechanism in hepatocellular carcinoma (HCC) progression. Differentially expressed circRNAs in exosomes were identified by RNA sequencing, and circTGFBR2 was identified and chosen for further study. The molecular mechanism of circTGFBR2 in HCC was demonstrated by RNA pulldown, RIP, dual-luciferase reporter assays, rescue experiments and tumor xenograft assay both in vitro and vivo. We confirmed exosomes with enriched circTGFBR2 led to an upregulated resistance of HCC cells to starvation stress. Mechanistically, circTGFBR2 delivered into HCC cells via exosomes serves as a competing endogenous RNA by binding miR-205-5p to facilitate ATG5 expression and enhance autophagy in HCC cells, resulting in resistance to starvation. Thus, we revealed that circTGFBR2 is a novel tumor promoter circRNA in hepatocytic exosomes and promotes HCC progression by enhancing ATG5-mediated protective autophagy via the circTGFBR2/miR-205-5p/ATG5 axis, which may be a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
7.
J Biol Chem ; 299(1): 102787, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509141

RESUMO

Chemoresistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). The bone marrow microenvironment (BMM) plays a complex role in protecting leukemia cells from chemotherapeutics, and the mechanisms involved are not fully understood. Antileukemia drugs kill AML cells directly but also damage the BMM. Here, we determined antileukemia drugs induce DNA damage in bone marrow stromal cells (BMSCs), resulting in resistance of AML cell lines to adriamycin and idarubicin killing. Damaged BMSCs induced an inflammatory microenvironment through NF-κB; suppressing NF-κB with small molecule inhibitor Bay11-7082 attenuated the prosurvival effects of BMSCs on AML cell lines. Furthermore, we used an ex vivo functional screen of 507 chemokines and cytokines to identify 44 proteins secreted from damaged BMSCs. Fibroblast growth factor-10 (FGF10) was most strongly associated with chemoresistance in AML cell lines. Additionally, expression of FGF10 and its receptors, FGFR1 and FGFR2, was increased in AML patients after chemotherapy. FGFR1 and FGFR2 were also widely expressed by AML cell lines. FGF10-induced FGFR2 activation in AML cell lines operates by increasing P38 MAPK, AKT, ERK1/2, and STAT3 phosphorylation. FGFR2 inhibition with small molecules or gene silencing of FGFR2 inhibited proliferation and reverses drug resistance of AML cells by inhibiting P38 MAPK, AKT, and ERK1/2 signaling pathways. Finally, release of FGF10 was mediated by ß-catenin signaling in damaged BMSCs. Our data indicate FGF10-FGFR2 signaling acts as an effector of damaged BMSC-mediated chemoresistance in AML cells, and FGFR2 inhibition can reverse stromal protection and AML cell chemoresistance in the BMM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células da Medula Óssea/metabolismo , Dano ao DNA , Fator 10 de Crescimento de Fibroblastos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral , Comunicação Parácrina
8.
Hum Cell ; 35(6): 1856-1868, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018458

RESUMO

Novel and accurate biomarkers are needed for early detection and progression evaluation of hepatocellular carcinoma (HCC). Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) has been studied in cancer biology; however, the expression pattern and biological function of PPP1R1A in HCC are unclear. The differentially expressed genes (DEGs) in HCC were screened by The Cancer Genome Atlas (TCGA) database. Real-time PCR and immunohistochemistry (IHC) assay were used to detect the expression of PPP1R1A in BALB/c mice, human normal tissues and corresponding tumor tissues, especially HCC. Then, Kaplan-Meier analysis of patients with HCC was performed to evaluate the relationship between PPP1R1A expression and prognosis. The transcriptional regulatory network of PPP1R1A was constructed based on the differentially expressed mRNAs, microRNAs and transcription factors (TFs). To explore the downstream regulation of PPP1R1A, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and immune infiltration score were performed. A total of 4 DEGs were screened out. PPP1R1A was differentially distributed and expressed in BALB/c mice and human tissues. PPP1R1A expression was higher in normal tissues than that in tumor tissues, and patients with higher PPP1R1A expression had better clinical outcome in HCC. In addition, we constructed miR-21-3p/TAL1/PPP1R1A transcriptional network. Furthermore, PPP1R1A may modulate the activation of PI3K-Akt pathway, cell cycle, glycogen metabolism and the recruitment of M2 macrophage in HCC. This study may help to clarify the function and mechanism of PPP1R1A in HCC and provide a potential biomarker for tumor prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glicogênio/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética
9.
J Hepatol ; 76(5): 1138-1150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101526

RESUMO

BACKGROUND & AIMS: Copper (Cu) is an essential trace element whose serum levels have been reported to act as an effective indicator of the efficacy of radiotherapy. However, little is known about the role of Cu in radiotherapy. In this study we aimed to determine this role and investigate the precise mechanism by which Cu or Cu-related proteins regulate the radiosensitivity of hepatocellular carcinoma (HCC). METHODS: The expression and function of Cu and copper metabolism MURR1 domain 10 (COMMD10) were assessed via a Cu detection assay, immunostaining, real-time PCR, western blot, a radiation clonogenic assay and a 5-ethynyl-2'-deoxyuridine assay. Ferroptosis was determined by detecting glutathione, lipid peroxidation, malondialdehyde and ferrous ion (Fe) levels. The in vivo effects of Cu and COMMD10 were examined with Cu/Cu chelator treatment or lentivirus modification of COMMD10 expression in radiated mouse models. RESULTS: We identified a novel role of Cu in promoting the radioresistance of HCC cells. Ionizing radiation (IR) induced a reduction of COMMD10, which increased intracellular Cu and led to radioresistance of HCC. COMMD10 enhanced ferroptosis and radiosensitivity in vitro and in vivo. Mechanistically, low expression of COMMD10 induced by IR inhibited the ubiquitin degradation of HIF1α (by inducing Cu accumulation) and simultaneously impaired its combination with HIF1α, promoting HIF1α nuclear translocation and the transcription of ceruloplasmin (CP) and SLC7A11, which jointly inhibited ferroptosis in HCC cells. In addition, elevated CP promoted HIF1α expression by reducing Fe, forming a positive feedback loop. CONCLUSIONS: COMMD10 inhibits the HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe homeostasis in HCC. This work provides new targets and treatment strategies for overcoming radioresistance in HCC. LAY SUMMARY: Radiotherapy benefits patients with unresectable or advanced hepatocellular carcinoma (HCC), but its effectiveness is hampered by radioresistance. Herein, we uncovered a novel role for copper in promoting the radioresistance of HCCs. This work has revealed new targets and potential treatment strategies that could be used to sensitize HCC to radiotherapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ferro/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Camundongos , Tolerância a Radiação/genética
10.
Chemosphere ; 243: 125434, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31995884

RESUMO

In this study, the granular sludge was operated under low aeration condition in sequencing batch reactor (SBR) and advanced continuous flow reactor (ACFR), respectively. Through increasing the sludge retention time (SRT) from 22 days to 33 days, the ACFR was successful startup in 30 days and achieved long term stable operation. Under SBR operation condition, the aerobic granular sludge (AGS) showed good nitrogen (60%), phosphorus (96%) and COD removal performance. During stable operation of continuous-flow, the nitrogen removal efficiency was increasing to 70%, however, the phosphorus removal efficiency could only be restored to 65%. Meanwhile, the sludge discharge volume from ACFR was about half of that in SBR. Results of high-throughput pyrosequencing illustrated that methanogenic archaea (MA), ammonia oxidizing archaea (AOA), denitrifying bacteria (DNB), denitrifying polyphosphate-accumulating organisms (DPAOs) played an important role in the removal of nutrients in ACFR. This study could have positive effect on the practical application of AGS continuous flow process for simultaneous biological nutrient removal (SBNR).


Assuntos
Aerobiose , Desnitrificação , Microbiota , Esgotos/microbiologia , Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Polifosfatos
11.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31123170

RESUMO

Background: Endometrial carcinoma (EC) still threatens the health of women. Thus, to explore how long intergenic non-protein coding RNA 01220 regulates the development of EC.Methods: Whole genome expression profile data of EC and paracancerous tissues in TCGA database were downloaded. LINC01220 expression in EC and paracancerous tissues of patients in our hospital were detected by qRT-PCR. Furthermore, the relationship between LINC01220 expression and clinicopathological features of EC patients was analyzed. After transfection with sh-LINC01220 and pcDNA-MAPK11 (mitogen-activated protein kinase) in EC cells, proliferative, colony formation abilities and apoptosis were determined by cell counting kit-8 (CCK-8), colony formation assay and flow cytometry, respectively. Western blot was conducted to determine the regulatory role of LINC01220 on MAPK11.Results: TCGA data showed that LINC01220 expression is markedly higher in EC tissues than that of paracancerous tissues, which was consistent without detection in EC patients of our hospital. LINC01220 expression was positively correlated to pathological grade and International Federation of Gynecology and Obstetrics (FIGO) stage of EC patients. After knockdown of LINC01220 in EC cells, proliferative and colony formation abilities decreased, whereas apoptotic rate increased. Cor function analysis revealed the positive correlation between LINC01220 and MAPK11 in EC. MAPK11 expression was regulated by LINC01220 in EC cells. Overexpression of MAPK11 can reverse the tumor suppressing effect of LINC01220 on EC.Conclusions: LINC01220 promotes EC development by stimulating proliferation and inhibiting apoptosis of EC cells through up-regulating MAPK11.


Assuntos
Proliferação de Células/genética , Neoplasias do Endométrio/genética , Proteína Quinase 11 Ativada por Mitógeno/genética , RNA Longo não Codificante/genética , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Humanos , Transfecção
12.
Blood Cancer J ; 8(7): 61, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29915172

RESUMO

An early molecular response is spectacularly predictive of outcome in chronic myeloid leukemia (CML) and early response landmarks may identify the high-risk patients likely to be benefit from an early therapy switch. In this study, we evaluated the most relevant cutoffs for early molecular response markers (BCR-ABL1 values at 3 months, log reduction and halving time between diagnosis and 3 months) in 476 first-line imatinib-treated Chinese patients with chronic phase CML. All outcomes were significantly superior for the 324 patients with 3-month BCR-ABL1 ≤10%, so did for the 270 patients with BCR-ABL1 >0.61 log reduction. BCR-ABL1 halving time ≤22 days was identified for patients with the most favorable outcome. Moreover, the prognosis was significantly poorest for patients with both halving time >44 days and BCR-ABL1 >10%. Importantly, multivariate regression analysis demonstrated that a BCR-ABL1 log reduction calculated at 3 months of 0.61 was the only variable that significantly predicted for OS. Our results highlight the importance of rapid initial decline of BCR-ABL1 in predicting satisfactory outcome. Our data support the evidence that monitoring BCR-ABL1 values at an early time point could contribute to accurately assess response and ultimately guide clinical decisions regarding the timing of therapeutic intervention.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Adolescente , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Mesilato de Imatinib/administração & dosagem , Mesilato de Imatinib/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Análise de Sobrevida , Transcrição Gênica , Resultado do Tratamento , Adulto Jovem
13.
Oncotarget ; 7(5): 6175-87, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26716419

RESUMO

Inspite of effective treatment with imatinib (IM), chronic myeloid leukemia (CML) is still an incurable disease. Some patients became refractory because of IM resistance. Bone marrow mesenchymal stem cells (BMSCs) have been implicated a role in promoting CML cells' resistance against IM treatment. The detailed molecular mechanisms, however, remain largely unknown. In this study, we found that BMSCs increased the expression of FZD7 and activated Wnt/ß-catenin signaling pathway in CML cells. BMSCs from CML patients showed increased efficiency to accelerate CML cell proliferation, enhance the drug resistance of K562 cells and up-regulate the expression of FZD7. Antagonism of FZD7 expression by shRNA significantly suppressed proliferation and increased IM sensitivity of CML cells co-cultured with BMSCs cells. Our findings suggest that FZD7, involved in canonical Wnt signaling pathway, plays a critical role in mediating BMSCs-dependent protection of CML cells, and potentially provide a novel therapeutic target for CML.


Assuntos
Receptores Frizzled/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/genética , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Mesenquimais , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA